Agoracom Blog Home

Posts Tagged ‘#graphite’

Graphene – Meet The Material of The Future That’s 200 Times Stronger Than Steel SPONSOR – ZEN Graphene Solutions $ZEN.ca $LLG.ca $FMS.ca $NGC.ca $CVE.ca $DNI.ca

Posted by AGORACOM at 6:40 PM on Friday, February 14th, 2020

SPONSOR: ZEN Graphene Solutions: An emerging advanced materials and graphene development company with a focus on new solutions using pure graphene and other two-dimensional materials. Our competitive advantage relies on the unique qualities of our multi-decade supply of precursor materials in the Albany Graphite Deposit. Independent labs in Japan, UK, Israel, USA and Canada confirm this. Click here for more information

Graphene has been dubbed the material of the future for its unbelievable strength and the myriad of potential applications it offers and European researchers have just released the first-ever manual on how to produce it.

The manual was released by the Graphene Flagship consortium composed of universities and companies. Founded in 2013, it is one of the three big EU-funded science projects with a budget of over €1 billion until 2023.

The consortium hopes the manual will boost the uptake of the material which has the potential to revolutionise whole industries.

Graphene is a layer of carbon atoms obtained from graphite, which we can find, for example, in the tip of a pencil.

Arranged in a honeycomb-like pattern, it is 200 times stronger than steel, harder than diamond, and carries both heat and electricity better than any other material including gold or copper. And it’s also a million times smaller than a strand of hair.

Seventy researchers participated in the elaboration of the free, 500-pages manual.

“It’s a big book that encompasses the description of many of the most important methods to produce graphene and other two dimensional materials,” Mar García Hernández, from Graphene Flagship told Euronews.

Researchers from Graphene Flagship have shown that at least 1,800 different layered materials exit but so far, only a few have truly been investigated.

“For any application of graphene or related materials, you need first to be able to make it. For this reason, a book or a paper that gives you precise details on how to make these materials, how to characterise them, how to transfer them from the good substrate to the final substrate is going to be very useful,” Andrea Ferrari, Graphene Flagship’s Science and Technology Officer told Euronews.

The material’s flexibility and resilience mean it can be used in a variety of industries such as aeronautics, space exploration, medicine, energy or electronics.

Last December, Graphene Flagship partnered with some of Europe’s biggest companies including Airbus, Fiat-Chrysler Automobiles, Lufthansa Technik, Siemens and ABB among others to take graphene-enabled prototypes to commercial applications.

One of the projects will develop state-of-the-art vision sensors, which could be critical for the safe functioning of self-driving cars while another will use graphene-based filters to remove contaminants such as pesticides and dangerous pathogens from drinking water.

SOURCE: https://www.euronews.com/2020/02/13/graphene-meet-the-material-of-the-future-that-s-200-times-stronger-than-steel

Tesla’s Advantage With Its Battery Technology — Low Cost SPONSOR: Lomiko Metals $LMR.ca $CJC.ca $SRG.ca $NGC.ca $LLG.ca $GPH.ca $NOU.ca

Posted by AGORACOM at 3:26 PM on Friday, February 14th, 2020

SPONSOR: Lomiko Metals is focused on the exploration and development of minerals for the new green economy such as lithium and graphite. Lomiko owns 80% of the high-grade La Loutre graphite Property, Lac Des Iles Graphite Property and the 100% owned Quatre Milles Graphite Property. Lomiko is uniquely poised to supply the growing EV battery market. Click Here For More Information

  • Tesla’s cost per kWh for battery packs was approaching $150/kWh last year while others were at a price of $200/kWh

It appears Tesla has an advantage over its rivals, such as GM and Porsche, when it comes to the new battery technology that it is developing. Tesla has long been a leader on EV batteries, for years seeming to have a significantly lower cost (cost per kWh of capacity) for batteries than others. A big part of that is because Tesla in-houses the work. It appears Tesla is making significant progress on this again with new developments.

The managing director of Cairn Energy Research Advisors, Sam Jaffe, recently noted that Tesla’s cost per kWh for battery packs was approaching $150/kWh last year while others were at a price of $200/kWh. Jaffe also tells CNBC that “Tesla has really revolutionized that part of the battery pack and made it much more sophisticated, and it gives them a competitive advantage.” Indeed. We definitely have a lot to look forward to on Tesla’s Battery Day.

Ten or so years ago, the idea of owning an EV seemed rather absurd. EVs were known to be super expensive due to the battery costs, and since they were new, everyday Americans weren’t willing to spend the money to beta test them.

Fast forward ten years. Tesla has advanced the auto industry tremendously with EVs, and a big part of that was through a core component of EVs — the battery. By taking on the most challenging problems and creating solutions for them, Tesla is doing what it does so well — moving the world forward.

In 2019, Elon Musk spoke of a “1 million-mile battery pack” and that it would be in production “next year.” He’s also announced that Battery Day will be in April, and has said that Tesla’s April company talk would be at the Gigafactory in Buffalo, where Tesla makes Solarglass Roofs. Perhaps this is where Battery Day will be held as well? There is much anticipation regarding Tesla battery developments following relatively recent acquisitions and promoted specs of coming models. What exactly is coming on the battery front from Tesla?

SOURCE: https://cleantechnica.com/2020/02/12/teslas-advantage-with-its-battery-technology-low-cost/

Next Tech Frontier – Can Graphene Change The World? SPONSOR – ZEN Graphene Solutions $ZEN.ca $LLG.ca $FMS.ca $NGC.ca $CVE.ca $DNI.

Posted by AGORACOM at 1:03 PM on Thursday, February 13th, 2020

SPONSOR: ZEN Graphene Solutions: An emerging advanced materials and graphene development company with a focus on new solutions using pure graphene and other two-dimensional materials. Our competitive advantage relies on the unique qualities of our multi-decade supply of precursor materials in the Albany Graphite Deposit. Independent labs in Japan, UK, Israel, USA and Canada confirm this. Click here for more information

Every age in the history of human civilisation has a signature material, from the Stone Age, to the Bronze and Iron Ages. We might even call today’s information-driven society the Silicon Age.

Since the 1960s, silicon nanostructures, the building-blocks of microchips, have supercharged the development of electronics, communications, manufacturing, medicine, and more.

How small are these nanostructures? Very, very small – you could fit at least 3,000 silicon transistors onto the tip of a human hair. But there is a limit: below about 5 nanometres (5 millionths of a millimetre), it is hard to improve the performance of silicon devices any further.

So if we are about to exhaust the potential of silicon nanomaterials, what will be our next signature material? That’s where “atomaterials” come in.What are atomaterials?

What are atomaterials?

“Atomaterials” is short for “atomic materials”, so called because their properties depend on the precise configuration of their atoms. It is a new but rapidly developing field.

One example is graphene, which is made of carbon atoms. Unlike diamond, in which the carbon atoms form a rigid three-dimensional structure, graphene is made of single layer of carbon atoms, bonded together in a two-dimensional honeycomb lattice.

Diamond’s rigid structure is the reason for its celebrated hardness and longevity, making it the perfect material for high-end drill bits and expensive jewellery. In contrast, the two-dimensional form of carbon atoms in graphene allows electron travelling frictionless at a high speed giving ultrahigh conductivity and the outstanding in plane mechanical strength. Thus, graphene has broad applications in medicines, electronics, energy storage, light processing, and water filtration. 

Using lasers, we can fashion these atomic structures into miniaturised devices with exceptional performance.

Using atomaterials, our lab has been working on a range of innovations, at various stages of development. They include:

  • A magic cooling film. This film can cool the environment by up to 10℃ without using any electricity. By integrating such a film into a building, the electricity used for air conditioning can be reduced by 35%, and summer electricity blackouts effectively stopped. This will not only save electricity bills but also reduce greenhouse emissions.
  • Heat-absorbing film. Some 97% of Earth’s water is in the oceans, and is salty and unusable without expensive processing. Efficiently removing salt from seawater could be a long-term solution to the growing global freshwater scarcity. With a solar-powered graphene film, this process can be made very efficient.

The film absorbs almost all the sunlight shining on it and converts it into heat. The temperature can be increased to 160℃ within 30 seconds. This heat can then distil seawater with an efficiency greater than 95%, and the distilled water is cleaner than tapwater. This low-cost technology can be suitable for domestic and industry applications.

  • Smart sensing film. These flexible atomaterial films can incorporate a wide range of functions including environmental sensing, communication, and energy storage. They have a broad range of applications in healthcare, sports, advanced manufacturing, farming, and others. For example, smart films could monitor soil humidity near plants’ roots, thus helping to make agriculture more water-efficient.
  • Ultrathin, ultra-lightweight lenses. The bulkiest part of a mobile phone camera is the lens, because it needs to be made of thick glass with particular optical properties. But lenses made with graphene can be mere millionths of a millimetre thick, and still deliver superb image quality. Such lenses could greatly reduce the weight and cost of everything from phones to space satellites.
  • Near-instant power supply. We have developed an environmentally friendly supercapacitor from graphene that charges devices in seconds, and has a lifetime of millions of charge cycles. By attaching it to the back of a solar cell, it can store and deliver solar-generated energy whenever and wherever required. You will be free and truly mobile.

Where to next?

It can take years for some of these laboratory technologies to reach fruition. To try and speed up the process, we established the CTAM Global OpenLab to engage with industry, academia, government and the wider community and to promote sharing and collaboration. The lab was launched earlier this month at the International Conference on Nanomaterial and Atomaterial Sciences and Applications (ICNASA2020).

The world is facing pressing challenges, from climate change, to energy and resource scarcity, to our health and well-being.

Material innovation is more vital than ever and needs to be more efficient, design-driven and environmentally friendly. But these challenges can only be solved by joint effort from worldwide researchers, enterprise, industry and government with a sharing and open mindset.

SOURCE: https://techfinancials.co.za/2020/02/12/next-tech-frontier-can-graphene-change-the-world/

Mercedes, Hydro-Québec Alliance Gives EV Battery Development a Boost SPONSOR: Lomiko Metals $LMR.ca $CJC.ca $SRG.ca $NGC.ca $LLG.ca $GPH.ca $NOU.ca

Posted by AGORACOM at 11:18 AM on Thursday, February 13th, 2020

SPONSOR: Lomiko Metals is focused on the exploration and development of minerals for the new green economy such as lithium and graphite. Lomiko owns 80% of the high-grade La Loutre graphite Property, Lac Des Iles Graphite Property and the 100% owned Quatre Milles Graphite Property. Lomiko is uniquely poised to supply the growing EV battery market. Click Here For More Information

Solid state battery research at Hydro-Québec

Mercedes-Benz is teaming with Hydro-Québec in the race to perfect a new generation of lithium-ion battery said to be lighter, stronger and safer than batteries now powering electric vehicles.

The partnership will allow researchers to field-test batteries in Mercedes vehicles and could hasten development of solid-state li-ion batteries that promise greater range and durability, the companies said

As well, solid-state batteries do not use the flammable liquid electrolytes blamed in numerous difficult-to-extinguish fires in electric vehicles around the globe.

Like other automakers, Mercedes is moving aggressively into electrification, with a goal of introducing at least 10 EVs for 2022 under its EQ and Smart subbrands. It also plans more plug-in gas-electric hybrids across its model lines.

Hydro-Québec is a leader in battery research and holds some 800 patents on energy storage technology. It developed its first solid-state li-ion battery in the 1990s.

Terms of the deal were not disclosed. Testing will take place at the Quebec agency’s research centre near Montreal and at the SCE France laboratory, a Hydro-Québec subsidiary in southwest France.

While battery technology has improved, issues around range, durability and safety are major obstacles to EV acceptance.

Karim Zaghib, who leads Hydro-Québec’s battery research, noted that EV batteries are not off-the-shelf products, so working with a major automaker that can integrate prototype unit into complex vehicle architecture should allow major progress toward better batteries.

As well, “our association will allow us to test new materials quickly in field conditions, and so accelerate the development cycle and respond to the concerns of automobile manufacturers.” Zaghib said in a release.

SOURCE: https://canada.autonews.com/automakers/mercedes-hydro-quebec-alliance-gives-battery-development-boost

Accessibility of Raw Materials for EV Batteries Is A Pressing Issue Says EESC SPONSOR: Lomiko Metals $LMR.ca $CJC.ca $SRG.ca $NGC.ca $LLG.ca $GPH.ca $NOU.ca

Posted by AGORACOM at 2:30 PM on Tuesday, February 11th, 2020

SPONSOR: Lomiko Metals is focused on the exploration and development of minerals for the new green economy such as lithium and graphite. Lomiko owns 80% of the high-grade La Loutre graphite Property, Lac Des Iles Graphite Property and the 100% owned Quatre Milles Graphite Property. Lomiko is uniquely poised to supply the growing EV battery market. Click Here For More Information

  • The European Economic and Social Committee (EESC) has singled out accessibility of raw materials as a pressing issue, warning that a prompt solution for the development of batteries is needed to make electric mobility and sustainable transport possible.

The European Union needs to secure permanent access to raw materials as soon as possible in order to develop a strong battery industry for electric vehicles. The alarm was sounded at the debate held in Brussels on 5th February 2020 by the Section for Transport, Energy, Infrastructure and the Information Society (TEN).

Widespread e-mobility, with zero COâ‚‚ emissions, is the next key step towards making sustainable transport and climate neutrality happen. Nevertheless, only by having ongoing access to raw materials for batteries will Europe be able to move away from fossil-based fuels and embrace electrification.

Colin Lustenhouwer, rapporteur for last year’s EESC opinion on batteries, pointed out that it was vital to raise awareness of the urgent measures needed.

“We must take immediate action” said Mr Lustenhouwer. “The accessibility of raw materials is an ongoing issue in an area where Europe has few resources and would like to guarantee supply. Electrification is the only solution for sustainable fuel and this requires batteries.”

Pierre Jean Coulon, president of the TEN section, added that for Europe’s sustainable future, the whole battery lifespan needs to be considered and that European countries need to equip themselves with the resources needed. European businesses can only become a major player in battery development and deployment in the global market by taking a huge leap forward over the next few years.

Car batteries are a crucial issue for Europe’s future and should not be taken for granted. They account for 40 percent of the cost of an electric vehicle, but 96 percent of them are produced outside Europe. The raw materials are not available in the EU to the extent needed and have to be imported. Lithium, nickel, manganese and cobalt mainly come from South America and Asia. This means that if the EU does not act, it will become increasingly dependent on third countries such as Brazil and China.

Furthermore, the need to secure the supply of raw materials for batteries is leading to international competition that may well affect the geopolitical balance and cause political tensions in exporting countries. The EU therefore needs to act swiftly to ensure that it has access on the global market and so will not be vulnerable as a result of the imminent race for raw materials.

The European strategy for batteries must be comprehensive and allow for their entire lifecycle, from creation to deployment and recycling. All actors have to be involved and pull together, in line with the principles of the value-chain approach which factors in every stage.

The EESC flagged up the importance of material recycling in its 2019 opinion on batteries, where ‘urban mining’ was promoted as a possible way to build new batteries by recovering elements from used products and waste, such as discarded electric and electronic devices.

In the opinion, the Committee called for a strong European battery industry and supported the Strategic Action Plan presented by the European Commission, emphasising two priorities: on the one hand, heavier investment was needed to achieve the necessary level of technological expertise while on the other, solutions had to be found to secure the supply of raw materials from third countries and EU sources.

Stressing that the EU needed to do more and adopt a structural approach to batteries, the EESC was one of the first institutions to bring together all the social partners to point out that batteries are one of the main challenges for Europe’s green and prosperous future.

SOURCE: https://www.renewableenergymagazine.com/electric_hybrid_vehicles/accessibility-of-raw-materials-for-ev-batteries-20200210

New Graphene-Based Material to Increase Recording Density of Data Storage Devices SPONSOR – ZEN Graphene Solutions $ZEN.ca $LLG.ca $FMS.ca $NGC.ca $CVE.ca $DNI.

Posted by AGORACOM at 12:58 PM on Tuesday, February 11th, 2020

SPONSOR: ZEN Graphene Solutions: An emerging advanced materials and graphene development company with a focus on new solutions using pure graphene and other two-dimensional materials. Our competitive advantage relies on the unique qualities of our multi-decade supply of precursor materials in the Albany Graphite Deposit. Independent labs in Japan, UK, Israel, USA and Canada confirm this. Click here for more information

Image result for graphene storage density

An international group of Russian and Japanese scientists recently developed a graphene-based material that might significantly increase the recording density in data storage devices, such as SSDs and flash drives. Among the main advantages of the material is the absence of rewrite limit, which will allow implementing new devices for Big Data processes.

The development of compact and reliable memory devices is an increasing need. Today, traditional devices are devices in which information is transferred through electric current. The simplest example is a flash card or SSD. At the same time, users inevitably encounter problems: the file may not be recorded correctly, the computer may stop “seeing” the flash drive, and to record a large amount of information, rather massive devices are required.

A promising alternative to electronics is spintronics. In spintronics, devices operate on the principle of magnetoresistance: there are three layers, the first and third of which are ferromagnetic, and the middle one is nonmagnetic. Passing through such a “sandwich” structure, electrons, depending on their spin, are scattered differently in the magnetized edge layers, which affects the resulting resistance of the device.

The control of information using the standard logical bits, 0 and 1, can be performed by detecting an increase or decrease in this resistance.

The international group of scientists from National University of Science and Technology MISIS (Russia) and National Institute for Quantum and Radiological Science and Technology (Japan) developed a material that can significantly increase the capacity of magnetic memory by increasing the recording density. The scientists used a combination of graphene and the semi-metallic Heusler alloy Co2FeGaGe.

“Japanese colleagues for the first time grew a single-atom layer of graphene on a layer of semi-metallic ferromagnetic material and measured its properties. The Japanese team, led by Dr. Seiji Sakai, conducts unique experiments, while our group is engaged in a theoretical description of the data obtained. Our teams have been working together for many years and have obtained a number of important results,” comments Pavel Sorokin, Sc.D. in Physics and Mathematics, head of the “Theoretical Materials Science of Nanostructures” infrastructure project at the NUST MISIS Laboratory of Inorganic Nanomaterials.

Previously, graphene was not used in magnetic memory devices as carbon atoms reacted with the magnetic layer, which led to changes in its properties. By careful selection of the Heusler alloy composition, as well as the methods of its application, it was possible to create a thinner sample compared to previous analogues. This, in turn, will significantly increase the capacity of magnetic memory devices without increasing their physical size.

Next, the scientists plan to scale the experimental sample and modify the structure.

https://www.graphene-info.com/new-graphene-based-material-increase-recording-density-data-storage-devices

TESLA, Lomiko and Batteries SPONSOR: Lomiko Metals $LMR.ca $CJC.ca $SRG.ca $NGC.ca $LLG.ca $GPH.ca $NOU.ca

Posted by AGORACOM at 1:33 PM on Monday, February 10th, 2020
BIG BIZ INTERVIEW

CEO INTERVIEW LINK

Lomiko Metals Outlines 2020 Project Plan for La Loutre Flake Graphite Property in Quebec

(Vancouver, British-Columbia and Montreal, Quebec) February 5, 2020 – Lomiko Metals Inc. (TSX-V: LMR, OTC: LMRMF, FSE: DH8C) (Lomiko or the “Company”) is pleased to announce plans to move forward with assessment and development of the La Loutre Property for 2020. The goals are as follows:

1) Complete 100% Acquisition of the Property
2) Complete Metallurgy and Graphite Characterization
3) Complete a Technical Report in accordance with NI 43-101 Guidelines

A “technical report” means a report prepared and filed in accordance with this Instrument and Form 43-101F1 Technical Report that includes, in summary form, all material scientific and technical information in respect of the subject property as of the effective date of the technical report;

4) Complete Preliminary Economic Assessment (PEA) compliant with NI 43-101 Guidelines

PEA means a study, other than a pre-feasibility or feasibility study, that includes an economic analysis of the potential viability of mineral resources;

Further details regarding the plan will be released when consultants are assigned for each task.

Results from Drilling Program

Results from the 2019 program (see Table 1 below, and Figure 1) at the Refractory Zone of the La Loutre graphite project (the “Project”) indicate considerable promise. A total of 21 holes were completed in 2019 on the Refractory Zone for a total of 2,985 metres. The Project is owned by Lomiko (80%) and Quebec Precious Metals Corporation (20%).

“La Loutre has proven to be a large and high-grade area worthy of further investment.” stated A. Paul Gill, CEO. “The only operating graphite mine in North America is the Imerys Graphite & Carbon at Lac-des-Îles, 53 km northwest of La Loutre which reported Proven reserves of 5.2 M Tonnes at a grade of 7.42 % Cg in July 1988 before the start of production.” (reference: Potentiel de la minéralisation en graphite au Québec, N’Golo Togola, MERN, page 31, Conférence Québec Mines, November 24 2016).

* mineralization hosted on adjacent and/or nearby projects is not necessarily indicative of mineralization hosted on the Company’s property:

Although the recent focus was on the Refractory Zone, the Project was also subject of an independent technical report in accordance with NI 43-101 – Standards of Disclosure for Mineral Projects, prepared by B. Turcotte and G. Servelle of InnovExplo Inc. from Val-d’Or, Québec, and O. Peters, of AGP Mining Inc., dated March 24, 2016, filed for the Project’s Graphene-Battery Zone. The report presented a mineral resource estimate of 18.4 M Tonnes at a grade of 3.19% carbon flake graphite (“Cg”) in the Indicated category and 16.7 M Tonnes at 3.75% Cg in the Inferred category using a cut-off of 1.5% Cg.

The above-noted 2016 mineral resource does not include the current results or the significant intercepts from the Refractory Zone in 2016 which were as follows:

LL-16-01 – 7.74% Cg over 135.60 m including 16.81% Cg over 44.10 m
LL-16-02 – 17.08% Cg over 22.30 m and 14.80% Cg over 15.10 m
LL-16-03 – 14.56% Cg over 110.80 m

The next task is to complete a new resource estimate in compliance with NI 43-101 for the entire Project since the above-mentioned 2016 resource estimate including the 2016 and 2019 drilling at the Refractory Zone.

Click Here For More Information

ZEN Graphene Solutions CEO, Dr. Francis Dubé, is Featured On The Stock Day Podcast SPONSOR – ZEN Graphene Solutions $ZEN.ca $LLG.ca $FMS.ca $NGC.ca $CVE.ca $DNI.ca

Posted by AGORACOM at 4:55 PM on Friday, February 7th, 2020

SPONSOR: ZEN Graphene Solutions: An emerging advanced materials and graphene development company with a focus on new solutions using pure graphene and other two-dimensional materials. Our competitive advantage relies on the unique qualities of our multi-decade supply of precursor materials in the Albany Graphite Deposit. Independent labs in Japan, UK, Israel, USA and Canada confirm this. Click here for more information

  • “This company has the very rare graphite deposit in Ontario – as it is able to transform or exfoliate into graphene products easier than other graphites around the world”
  • “The goal of the facility is to start producing some of these nanomaterials – graphene, graphene oxide, and graphene quantum dots.” “These materials at the research level have a lot of excitement around them. They also come at a very high price.”

Phoenix, Arizona–(Newsfile Corp. – February 6, 2020) – The Stock Day Podcast welcomed ZEN Graphene Solutions Ltd. (OTC Pink: ZENYF) (“the Company”), an emerging graphene technology solutions company with a focus on the development of graphene-based nanomaterial products and applications. CEO of the Company, Dr. Francis Dubé, joined Stock Day host Everett Jolly.

Jolly began the interview by noting that Dubé was appointed CEO of the Company in early 2019 and asked about his background with the Company. Dubé explained that he has been a long-term shareholder of the Company, which eventually led to his position as its CEO. “We really liked the asset that this company has – the very rare graphite deposit in Ontario – as it is able to transform or exfoliate into graphene products easier than other graphites around the world,” explained Dubé. “With the graphene markets predicted to be 5 Billion dollars by 2030 and the Quantum Dots market supposed to be 30 Billion dollars by then as well, this created a big opportunity for this company.” “We really wanted to bring a science and business approach to this mining project,” he continued. “There was a lot of work to do on the science front, so we brought in a lot of smart people around us,” said Dubé, adding that the Company has partnered with numerous universities and is leveraging their research dollars.

“There is no other graphite like it; It came up as a liquid intrusion into the host rock. When you compare that to regular graphite, which comes from millions of years of heat and pressure, it’s a very different formation and because of the way it was formed it really gives us a natural advantage in the graphene space,” said Dubé. “That’s why I got involved and we’ve done a lot of great things since we took over about 21 months ago,” he shared.

Jolly then commented on the Company’s new facility and asked about their plans for this space. “The grand opening of the new facility is actually March 3rd. So, it’s very new and we’re just getting into the space,” said Dubé, adding that the Company has ordered equipment for the facility, which has recently started to arrive. “The goal of that facility is to start producing some of these nanomaterials – graphene, graphene oxide, and graphene quantum dots,” explained Dubé. “These materials at the research level have a lot of excitement around them. They also come at a very high price,” he added, noting that graphene quantum dots sell for around $4,000 per gram.

Dubé then explained that given the facility’s ability to produce these high-end materials, the Company has the opportunity to develop a steady cash flow by supplying them to universities. “This does a few things for us. Number one, it’s a proof of concept,” said Dubé. “Number two, we can actually start generating some revenue, which for a company like us is very exciting,” he continued. “This gives us the potential to start earning enough revenue to offset our expenses.”

“The biggest thing is it starts creating some opportunities for us to start partnering with universities, to work with end users that are partners in those universities, and create a sales funnel for us,” said Dubé. “So, we’re pretty excited to get that facility up and running,” he shared.

Jolly then asked about the progress of the Company’s recent licensing agreements. “We have three universities that we are working with,” said Dubé. “We have signed a non-exclusive agreement with one them to use their patented process to make graphene,” he explained. “We’re pretty excited to work with them and scale up this process,” said Dubé, adding that the Company is also working with an additional university through an exclusive licensing agreement to develop and scale up processes to produce graphene oxide.

“One of the advantages there is that the processes in place, which have been developed for the last seven or eight months, really work with our graphite and only our graphite,” said Dubé. He then shared that the Company is also working with the University of British Columbia on numerous projects.

“Your flagship property, the Albany Graphite Deposit, what is going on over there at this moment?” asked Jolly. “In 2019, we raised the necessary money to start the baseline studies and completed the first year last year. We’re actually starting the second year of that baseline work now, and as an industrial mineral under provincial jurisdiction, we have to do two years of that,” said Dubé. “We’re gonna be looking at those results and hopefully jumping right into permitting after that,” he explained. “We’re moving the project along as fast as we can from that perspective.”

To close the interview, Dubé shared that the Company will be beginning the production of nanomaterials and will also have a web store set-up by the end of the month, which will allow users to purchase the products. “We’re hoping to start generating some revenue starting in March of this year. So, we’re really at an inflection point for us as a company right now,” said Dubé. “I don’t think there has ever been a better time to start looking at our company,” closed Dubé.

To hear the entire interview with Dr. Francis Dubé, follow the link to the podcast here: https://audioboom.com/posts/7497655-zen-graphene-solutions-ltd-ceo-dr-francis-dube-is-featured-on-the-stock-day-podcast

About ZEN Graphene Solutions Ltd.

ZEN is an emerging graphene technology solutions company with a focus on the development of graphene-based nanomaterial products and applications. The unique Albany Graphite Project provides the company with a potential competitive advantage in the graphene market as independent labs in Japan, UK, Israel, USA and Canada have independently demonstrated that ZEN’s Albany PureTM Graphite is an ideal precursor material which easily converts (exfoliates) to graphene, using a variety of mechanical, chemical and electrochemical methods.

For further information:

Dr. Francis Dubé, Chief Executive Officer
Tel: +1 (289) 821-2820
Email: [email protected]

SOURCE: https://finance.yahoo.com/news/zen-graphene-solutions-ltd-ceo-140200823.html

From Delivery Trucks To Scooter-Moving Vans, Fleets Are Going Electric SPONSOR: Lomiko Metals $LMR.ca $CJC.ca $SRG.ca $NGC.ca $LLG.ca $GPH.ca $NOU.ca

Posted by AGORACOM at 1:45 PM on Friday, February 7th, 2020

SPONSOR: Lomiko Metals is focused on the exploration and development of minerals for the new green economy such as lithium and graphite. Lomiko owns 80% of the high-grade La Loutre graphite Property, Lac Des Iles Graphite Property and the 100% owned Quatre Milles Graphite Property. Lomiko is uniquely poised to supply the growing EV battery market. Click Here For More Information

Electric vans charge at a warehouse of the German postal and logistics service Deutsche Post near Frankfurt in July 2018. Fleet vehicles are increasingly going electric in Europe and China, and some analysts say American fleets will be following suit.

  • As electric cars grow in popularity and visibility, experts say a revolution is coming in a place most people overlook: corporate and municipal fleets.
  • The scooter company Lime is the latest firm to announce that it plans to completely remove gas- and diesel-powered vehicles from its fleet and power its new electric work vehicles with renewable energy.

Lime is famous, of course, for electric vehicles — the small battery-powered scooters that have popped up on sidewalks across the United States. And as the world’s largest scooter company, it promotes itself as an eco-friendly alternative to driving. But so far, some gas-guzzling is still involved behind the scenes.

“All of our scooters and e-bikes are already electric, already powered by renewables,” says Andrew Savage, the head of sustainability at Lime. “We’re going to take the vans and the vehicles used to manage those programs and transition those to zero emissions as well.”

Lime’s fleet isn’t large — a few hundred vehicles for now. But the company is not alone in plotting the switch.

Lime, along with companies like Ikea and Unilever, is joining the EV100 initiative to commit to an all-electric fleet. Other large companies, such as DHL, Amazon and AT&T, have committed to “accelerating” the transition to electric fleet vehicles.

Millions of fleet vehicles are on the road — everything from delivery trucks and maintenance vans to police cars and school buses. Right now, less than 1% of those vehicles are electric, according to the research firm Guidehouse (formerly known as Navigant).

But in a decade, the group predicts that 12% of fleet vehicles will be plug-ins. That will mean a rise from about 2 million electric fleet vehicles now to more than 70 million in 2030.

“Given the life span of vehicles … 12% [of the] population will require a significant portion of new vehicles sold being plug-in electric vehicles,” says Guidehouse’s Ted Walker.

Interest in sustainability will drive some of that growth. Companies like Lime that market themselves as climate friendly or have made climate pledges to investors and partners need to reduce the emissions from their fleets in order to restrain emissions. And around the world — particularly in Europe and China — government pressure is spurring investment in electric vehicles of all types.

But there are other factors too. In some ways, selling electric vehicles to companies is easier than selling one to an individual car owner.

Consider the price. “Electric vehicles are going to have a higher purchase price, but there’s a lower maintenance, lower fuel cost,” Walker says. Where an individual might focus on the sticker shock, a company is more likely to consider the lifetime cost of the vehicle.

Then there’s range anxiety. It takes longer to charge a battery than to fill up a gas tank, and some people (particularly those who have never owned or leased an electric vehicle) worry that they’ll go on a long trip and run out of juice. The concern is common even for drivers who very rarely drive long distances.

Fleet operators think differently; they know how far their cars go in a day, says Steve Burns, the CEO of Lordstown Motors. The Ohio startup is making a pickup truck specifically to sell to fleets.

“We are catering mostly to people that stay local — whether that’s a florist, a landscaper, a police officer,” Burns says. “[Our truck] can go 250 miles on a charge. Most of these type of folks go 60 or 70 miles a day.”

There are some logistical challenges — fleet operators have to set up charging infrastructure in their garages or parking lots, for instance.

But there’s another obstacle. Lordstown Motors’ truck, the Endurance, isn’t available yet. No mass-production electric pickup has yet arrived on the U.S. market. And in America, options for vans and other work vehicles are similarly slim.

“It’s only a small handful, and the supply is actually quite constrained,” says Savage, of Lime.

So companies are expressing their interest in electric fleets partly as a signal to automakers — that they need to catch up with demand.

SOURCE: https://www.npr.org/2020/02/07/803145517/from-delivery-trucks-to-scooter-moving-vans-fleets-are-going-electric

Electric Vehicles Could Transform Energy Storage SPONSOR: Lomiko Metals $LMR.ca $CJC.ca $SRG.ca $NGC.ca $LLG.ca $GPH.ca $NOU.ca

Posted by AGORACOM at 11:24 AM on Thursday, February 6th, 2020

SPONSOR: Lomiko Metals is focused on the exploration and development of minerals for the new green economy such as lithium and graphite. Lomiko owns 80% of the high-grade La Loutre graphite Property , Lac Des Iles Graphite Property and the 100% owned Quatre Milles Graphite Property. Lomiko is uniquely poised to supply the growing EV battery market. Click Here For More Information

Apart from driving a clean transportation revolution over the next three decades, electric vehicles (EVs) could help the power grid’s storage needs as growing shares of renewable energy sources—predominantly solar and wind—are being incorporated into electricity grids. 

Batteries from EVs could have so much more potential energy storage by 2050 that electric cars could be the ones to boost the energy storage of the power grid to accommodate rising solar and wind capacity, the International Renewable Energy Agency (IRENA) says.

While electric vehicles and renewables may now look as two totally separate clean-energy technologies, and EVs are a strain on power grids when charging at peak electricity demand, there are potentially huge benefits to the power grid if EVs are plugged in to smart grids, IRENA experts say.

The EV fleet of the future could create vast electricity storage capacity, the agency says.

Future EV battery capacity may dwarf stationary battery capacity by 2050, experts at IRENA said in an analysis from last year. In 2050, around 14 terawatt-hours (TWh) of EV batteries would be available to provide grid services, compared to 9 TWh of stationary batteries, according to the agency.  

“Smart charging for electric vehicles (EVs) holds the key to unleash synergies between clean transport sector and low-carbon electricity. It minimises the load impact from EVs and unlocks the flexibility to use more solar and wind power,” IRENA said.   

Smart charging, unlike uncontrolled charging, also decreases simultaneity and lowers peaks in demand. 

In addition, smart charging of EVs has the potential to significantly cut the peak load and avoid grid reinforcements, at a cost of 10 percent of the total cost of reinforcing the grid, according to IRENA’s experts.

In the key forms of advanced EV charging, in V2H/B (vehicle to home/building), vehicles could act as supplement power suppliers to the home, while in V2G (Vehicle-to-grid), the smart grid controls vehicle charging and returns electricity to the grid.

Adjusting charging patterns, considering that EVs currently are idle in parking for 90–95 percent of the time for most cars, could contribute to both system and local flexibility, IRENA says.

Yet, challenges to this smart EV charging approach remain.

Technical challenges include uncertainty over how using EV batteries to return electricity to the grid would degrade the battery. Another hurdle is the lack of standardization and consumer knowledge of the vehicle-to-grid systems.

Additional challenges lie in consumer preference for the fastest charging possible, which diminishes the use of an EV battery to provide flexibility to the power grid.

“With slow charging the EV battery is connected to the grid for longer periods of time, increasing the possibility of providing flexibility services to the power system,” IRENA says.

The smart charging systems would work best with slow charges, so drivers’ preferences right now are not conducive to EV batteries helping the grid flexibility, according to IRENA’s Arina Anisie, one of the authors of the agency’s analysis on smart charging.

“It really needs to change the behavior of the consumer to be able to harness the synergies between mobility and wind and solar,” Anisie told Forbes contributor Jeff McMahon. Related: OPEC+ Considers 500,000 Bpd Cut In Emergency Meeting

According to IRENA, a mass rollout of smart EV charging would also depend on whether the approach could get political support amid increasingly ambitious targets for lower and net zero carbon emissions in developed economies, especially in Europe.

If the uptake of smart charging takes off this decade, grid flexibility from EVs could increase dramatically by 2030, IRENA reckons.

“If unleashed starting today, the use of EVs as a flexibility resource via smart charging approaches would reduce the need for investment in flexible, but carbon-intensive, fossil-fuel power plants to balance renewables,” the agency says in its analysis.  

This approach may be promising and could integrate clean mobility with increased solar and wind capacity, but it still has several key challenges to overcome, including a shift in drivers’ preferences toward buying EV as their next car and using slower but smart charging rather than ultra-fast charging—and these preferences could be the hardest thing to change.  

By Tsvetana Paraskova for Oilprice.com

SOURCE: https://oilprice.com/Energy/Energy-General/Electric-Vehicles-Could-Transform-Energy-Storage.html#